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Frailty Identification Using Heart Rate Dynamics:
A Deep Learning Approach

Maryam Eskandari , Saman Parvaneh , Hossein Ehsani, Mindy Fain, and Nima Toosizadeh

Abstract—Previous research showed that frailty can
influence autonomic nervous system and consequently
heart rate response to physical activities, which can
ultimately influence the homeostatic state among older
adults. While most studies have focused on resting state
heart rate characteristics or heart rate monitoring without
controlling for physical activities, the objective of the
current study was to classify pre-frail/frail vs non-frail older
adults using heart rate response to physical activity (heart
rate dynamics). Eighty-eight older adults (≥65 years) were
recruited and stratified into frailty groups based on the
five-component Fried frailty phenotype. Groups consisted
of 27 non-frail (age = 78.80±7.23) and 61 pre-frail/frail
(age = 80.63±8.07) individuals. Participants performed a
normal speed walking as the physical task, while heart
rate was measured using a wearable electrocardiogram
recorder. After creating heart rate time series, a long
short-term memory model was used to classify participants
into frailty groups. In 5-fold cross validation evaluation,
the long short-term memory model could classify the
two above-mentioned frailty classes with a sensitivity,
specificity, F1-score, and accuracy of 83.0%, 80.0%, 87.0%,
and 82.0%, respectively. These findings showed that heart
rate dynamics classification using long short-term memory
without any feature engineering may provide an accurate
and objective marker for frailty screening.

Index Terms—Aging, classification, data augmentation,
deep learning, frailty, heart rate variability, long short-term
memory, machine learning.

I. INTRODUCTION

THE World’s older population is rapidly growing, and it
has been estimated that the population of adults aged 60
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years or more will increase from 600 million individuals in 2000
to two billion by 2050 [1]. It is now more important than ever
to identify and treat aging-related syndromes, among which,
frailty is highly prevalent and clinically important. Frailty is
a common geriatric syndrome characterized by an increased
vulnerability to external stressors and results in hospitalization,
cognitive decline, institutionalization, delirium, and mortality
[2], [3], [4], [5].

One cause of frailty is the homeostenosis phenomenon, which
is the reduced ability to maintain homeostasis or physiological
balance under stress [6]. To understand the underlying mech-
anism leading to frailty, several physiological systems have
been studied, including the cardiovascular system. Evaluating
resting-state heart rate (HR) showed an impaired cardiac auto-
nomic nervous system (ANS) among frail older adults, which
was represented by smaller HR variability (HRV) and reduced
complexity [7], [8], [9]. The ANS, including the cardiac ANS,
plays an important role in maintaining homeostasis by regulating
physical activities [10], [11]. This role becomes particularly
important while performing essential activities of daily living
[12]. Aging would cause impairments in the cardiac ANS per-
formance, which can lead to impairments in HR response to
physical activity. Theoretically, an impaired ANS, which already
suffers from decreased physiological reserves due to frailty, is
not able to restore cardiac output and maintain hemodynamic
homeostasis under stress from the physical activity [13], [14].
Sympathetic and parasympathetic activation regulate the HR by
changing HR, to reduce a negative or positive deviation from
the equilibrium and keep HR homeostasis [15].

Impairment in cardiac autonomic control with frailty was
demonstrated as an impaired orthostatic HR and a slowed re-
covery of systolic blood pressure during standing [8], which
may relate to sinoatrial node dysfunction due to alterations
in electrical conduction and action potential morphology [16].
Accordingly, frail elderly adults are more vulnerable to develop
cardiovascular diseases and health complications including my-
ocardial infarction [17].

In previous research machine learning approaches have been
implemented to study the association between motor perfor-
mance and frailty. Arshad et al. [18] implemented Convolutional
Neural Networks (CNN) to study frailty, for which, gait data
were collected using inertial measurement unit (IMU) sensors.
Segmented signals collected from sensors in this study were
encoded as images and provided 85.1% accuracy in predicting
frailty/pre-frailty. In another study by Aponte-Hao et al. [19]
the performance of identifying frailty was assessed from a
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sample of 5466 participants within the Primary Care Sentinel
Surveillance Network (CPCSSN). Several machine learning
approaches were utilized including elastic net logistic regres-
sion, support vector machine (SVM), random forest, XGBoost,
and feedforward neural network (NN) models. Among eight
models, XGBoost showed the best performance in identifying
frail participants with an accuracy of 84.84%. In a larger lon-
gitudinal study, Tarekegn et al. used different machine learn-
ing models including artificial neural network (ANN), genetic
programming (GP), SVM, random forest, logistic regression,
and decision tree to develop predictive models for identifying
frailty in older adults. For this study administrative health dataset
of 1,095,612 elderly participants aged 65 or older was used,
with 58 input variables including age, emergency department
visits with red code, number of urgent hospitalizations, hav-
ing disability, having diabetes, having anemia and 6 output
variables (mortality, disability, urgent hospitalization, fracture,
preventable hospitalization, and accessing the emergency de-
partment). Among all models ANN showed highest performance
with 78% accuracy. Lastly, according to Friedrich et al. [20] deep
learning approach (i.e., long short-term memory-LSTM) has
better performance compared to machine learning approaches in
frailty identification when time-series data from wearable sensor
were implemented as input, for which the LSTM deep neural
network was able to achieve 95% accuracy.

Although many studies have shown strong associations be-
tween frailty with motor function and resting-state HR charac-
teristics [21], limited evidence exists to show the association
between frailty and HR behavior during physical activity. In our
series of investigations, we have previously observed a weaker
and slower HR response to walking among pre-frail/frail older
adults, compared to non-frail individuals [22].

The aim of the current study was to assess capability of elec-
trocardiogram (ECG) assessment for identifying frailty status in
older adults using LSTM model. The main hypothesis was that
using HR response to physical activity and LSTM model, we
would predict pre-frailty/frailty with an accuracy equal or better
than what has been commonly observed using motor function
(≥80% accuracy). The secondary hypothesis was that the LSTM
deep learning approach would better predict frailty compared to
engineered ECG parameters or shallow learning. For assessing
the hypotheses, we implemented multiple LSTM architectures
to classify pre-frail/frail versus non-frail older adults using RR
intervals extracted from ECG signals. Of note, the sequence of
Q, R, and S waves represent ventricular depolarization within
the ECG signal. Machine learning and deep learning algorithms
demonstrated great performance in pattern recognition, causal
inferences, and classification of HR time series for frailty as-
sessment [23], [24], [25], [26], among which LSTM method
have been outperformed other approaches [24], [27]. Further, to
confirm our secondary hypothesis, we compared LSTM result
with classic machine learning approaches. We also studied the
impact of 1) converting unevenly sampled HR data to evenly
sampled HR as an input to LSTM and 2) data augmentation on
frailty identification to account for small number of participants
and unbalanced data set (unequal number of participants in each
frailty group).

II. MATERIALS AND METHOD

A. Participants

Participants were recruited from the Arizona Frailty and Fall
Cohort, including primary, secondary, and tertiary health care
settings, community providers, assisted living facilities, retire-
ment homes, and aging service organizations between October
2016 and March 2018. Inclusion criteria were being 65 years
or older and being able to walk a minimum distance of 9.14m
(30 feet). Participants were excluded from the study for any of
the following conditions: gait or mobility disorders (Parkinson’s
disease, multiple sclerosis, or recent stroke), cognitive impair-
ment identified by a Mini-Mental State Examination (MMSE)
score ≤ 23 [28], terminal illness, diseases/disorders that can
directly influence HR (including arrhythmia and use of pace-
maker), and usage of β-blockers or similar medications that can
influence HR. This study was conducted according to the prin-
ciples expressed in the declaration of Helsinki [29] and written
informed consent obtained from eligible participants. The study
was approved by the University of Arizona Institutional Review
Board.

Eighty-eight participants were recruited, among whom, 27 (10
males, 17 females) were non-frail (age= 78.80±7.23 years) and
61 (17 males, 44 females) were pre-frail/frail (54 pre-frail and 7
frail, age = 80.63±8.07). None of the demographic information
was significantly different between the pre-frail/frail and non-
frail groups (p>0.07, Table I).

B. Frailty Assessment

Frailty was assessed based on five physical characteristics,
including [30]: 1) self-reported unintentional weight loss of 4.54
kg (10 pounds) or more in the previous year; 2) weakness based
on grip strength measurements from both left and right arms
(adjusted with body mass index (BMI) and sex); 3) slowness
based on the required time to walk 4.57m or 15 feet (adjusted
with height and sex); 4) self-reported exhaustion based on a
short two-question version of Center for Epidemiological Stud-
ies Depression (CES-D) scale; and 5) self-reported low energy
expenditure based on a short version of Minnesota Leisure Time
Activity questionnaire [31]. Participants were categorized as
frail if they met at least three criteria out of five, pre-frail if
they met one or two criteria, and non-frail if they met none of
the criteria. Due to a small number of frail individuals in this
study (n = 7), participants were classified into two groups of
“non-frail” and “pre-frail/frail”. For assessing frailty, the Fried
phenotype was used as the most validated and reliable tool, and
because it incorporates measures associated with physical frailty
(e.g., gait test and grip strength measures) [32].

C. Gait Test and Data Acquisition

Gait assessment was conducted at participants’ home under
the normal speed condition, for a distance of 4.57m (15 feet). In
addition to capturing HR during walking test, the baseline and
recovery HR were collected while the participant was standing
still before and after the walking trial. Data for 5 and 10 sec-
onds of quiet standing were used, respectively for baseline and
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TABLE I
DEMOGRAPHIC INFORMATION FOR FRAIL/PRE-FRAIL AND NON-FRAIL

GROUPS

SD: standard deviation.
HR: heart rate.
RR CV: coefficient of variation (SD divided by mean) of RR intervals.
RMS: room-mean-square.
P50: percentage of successive RR intervals with differences larger than 50
millisecond.

recovery HR. HR data were collected using wearable electrocar-
diogram (ECG) and accelerometer sensors (360° eMotion Faros
(Fig 1), Mega Electronics, Kuopio, Finland; sampling frequency
= 1000Hz for ECG and 100Hz for accelerometer). For recording
ECG two electrodes were used; one was located on the left side
of the torso, and the other one under the rib cage on the left side
(Fig. 1).

D. Machine Learning Approach

The workflow of the implemented machine learning approach
was as follows (Fig. 2): 1) data preprocessing to create HR time
series from the ECG data; 2) interpolation and resampling to

Fig. 1. Sensor’s location on the body.

make the HR data evenly sampled; 3) zero padding all HR time
series to the same length; 4) data augmentation to increase and
balance the number of samples in each frailty group; and 5)
LSTM algorithm to predict frailty categories using the HR data
and recording the performance of prediction using a five-fold
cross-validation. The LSTM algorithm was implemented here
because it has capability of storing and remembering informa-
tion from earlier stages for a long time using long short-term
memory, and this characteristic make it preferable for classifi-
cation of physiological time series such as HR data [27]. For
cross-validation the dataset was split up into five folds with
equal number of participants in each fold. One fold was used for
testing and the remaining four folds were used for training. This
situation continued until all folds were used for testing. Finally,
average of each performance metric was calculated from each
training set and was used as the performance metric.

1) Preprocessing: For the preprocessing, first, using the syn-
chronized ECG and accelerometer data and available examiner
note, the exact starting and ending points of walking trials were
selected (Fig. 2). Corresponding segment of ECG data was
then extracted from the ECG signals, including the period of
five seconds before the walking (baseline) and 10 seconds after
finishing the task (recovery). To extract RR intervals from the
ECG data and create HR time series, QRS peaks were detected
using the Pan- Tompkins algorithm [28]. To assure the accuracy
of QRS detection, the selected peaks were manually checked
and revised separately by two investigators (HS and ME). Third,
ectopic beats were filtered by removing RR intervals that diverge
more than 20% from the previous beat [29].

2) Machine Learning Approach: In the current study logistic
regression, multilayer perceptron (MLP), and XGBoost algo-
rithm were utilized for comparison with LSTM. In the logistic
regression approach, ten extracted features were used to predict
frailty, including: 1) time to peak HR: Elapsed time to reach
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Fig. 2. Schematic representation of the study workflow.

maximum HR during the task with reference to minimum base-
line HR; 2) HR recovery time: Elapsed time to reach minimum
HR during the recovery with reference to maximum HR; 3) HR
Percent increase: Increase in HR during the task compared to
minimum baseline HR as the percentage of minimum baseline
HR; 4) HR Percent decrease: Decrease in HR during the recovery
compared to maximum HR during the task as the percentage
of maximum HR; 5) HR mean; 6) beat-to-beat (RR) interval
mean; 7) RR CV: The coefficient of variation (standard deviation
divided by mean) of RR intervals; 8) RMSSD: Root mean square
of successive heartbeat interval differences; 9) P50: Percentage
of successive RR intervals with differences larger than 50 mil-
lisecond; and 10) Poincare’s SD1 and SD2: Minor (SD1) and
major (SD2) axis of the fitted ellipse to Poincare plot (plot of
RR interval as a function of a previous RR interval) (based on
our previous work – see Table I) [22]. In this approach, different
solvers (SAGA and LBFGS) and different regularization meth-
ods (l1, l2) with stratified 5-fold cross validation strategy were
implemented.

Multiple MLPs with different hidden layers have been de-
ployed. Stochastic gradient descent (SGD) and Adam optimiz-
ers (an adaptive moment estimation method based on gradient
descent) were used to optimize the model and minimize the cost
function. Also, hyperbolic tangent (Tanh) and rectified linear

unit (ReLU) activation functions on different hidden layers (20,
15, 10) and (30, 20, 15, 10) were examined. Similar to logistic
regression, stratified 5-fold cross validation strategy was utilized
and the L1 regularization technique was added to the model.

For XGBoost approach, different max-depth, number of esti-
mators, and different booster methods were applied. The number
of estimators was the number of decision trees that were used
within XGBoost. For the boosters, gbtree, gblinear, and dart
were implemented. For the performance metrics, accuracy, sen-
sitivity, specificity, precision, and F1-score for predicting pre-
frailty/frailty (positive condition) were calculated and reported
for these three algorithms.

3) Interpolation, Resampling, and Zero-Padding: HR time
series is a non-uniformly sampled data as time interval be-
tween heart beats (QRS peaks) can change through recording
in response to demand. LSTM model performance drops for
analysis of non-uniformly sampled data. Since HR time series
are unevenly sampled, the interpolation and resampling were
used to create equidistant HR time series. A linear interpola-
tion was used to form a continuous signal and resampling to
three different frequencies of 3 Hz, 5 Hz, and 7 Hz was used
to produce evenly sampled HR data with the length of 199,
332, and 466 samples [22]. For example, for 3 Hz setting, at
every second, three data points were interpolated using linear
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Fig. 3. The LSTM network with five LSTM layers and two fully-
connected layers.

interpolation. Of note, to assess the impact of evenly sampling
on the performance of the LSTM model, both raw unevenly
sampled and evenly sampled time series were used in the model
development. Further, the number of samples within HR time
series may differ between participants, because the walking du-
ration were different between trials. Therefore, we implemented
the “zero-padding” approach [33] by adding zeros to the end
of the input sequence to provide an equal sample size for HR
time series across participants. For this, the number of zeros
that were added to the end of each HR data was equal to the
difference between HR data and the longest HR data available.
Of note, the longest and shortest HR vectors were 199 and 142,
respectively.

4) Data Augmentation and Classification: In the current
study we used the LSTM model, which is a variation of recurrent
neural network (RNN) algorithm, best suited for analysis of
time series data similar to HR [34]. To find the best LSTM
model, several hyper-parameters were tuned. For tuning the
algorithm structure, 10 settings with combination of different
LSTM and dense layers were utilized, to explore the optimum
number of layers for avoiding under- and over-fitting (Fig. 2).
For Training and optimization, the model hyperparameters was
considered for testing, such as activation function, loss func-
tion, and learning rate. Sigmoid was applied as an activation
function for the classification of the output layer, while ReLU
and Tanh were deployed for all other hidden layers as activation
functions. Loss function was calculated using binary cross-
entropy function, which is useful for binary classification tasks,
and Adam optimizer was used to update weights during back-
propagation. Based on the performance of the model on different
sets of hidden layers, the optimum number of layers and nodes
(best combination of the number of hidden layers and number
of nodes in each hidden layer) was specified (Fig. 3). Two
classes of pre-frail/frail and non-frail labels were considered for
the model.

Insufficient data may result in poor convergence of the
LSTM model. Furthermore, imbalance dataset (smaller sample
of non-frail compared to pre-frail/frail) can lead to a biased
classification result [35]. Therefore, data augmentation was

performed in this study to increase training sample size and
provide balanced data. In this study, a combination of scaling
and jittering methods [36] was applied, to create new HR
training data. For scaling a random scalar value was multiplied
to the vector of HR time series. Random value was returned from
a normal distribution with a mean of one and standard deviations
(SDs) of 0.05, 0.1, or 0.2 [37], [14]. In the second step, Gaussian
noise was multiplied to the scaled data set, including a vector
of normal distribution with a zero mean and SDs of 0.01, 0.05,
or 0.1 [37], [14]. For tuning the scaling and the Gaussian noise
values, nine setting based on the different SDs in scaling and
jittering were implemented and among them the best setting
of scaling with SD of 0.2 and jittering with SD of 0.1 was
selected. Using the above approach, the number of data were
increased from 88 (before data augmentation) to 455 (after data
augmentation, including 224 non-frail and 231 pre-frail/frail).

For model evaluation, five-fold cross-validation approach was
used. LSTM model was trained on training dataset (four folds)
and F1-score, accuracy, AUC, sensitivity, specificity, and preci-
sion were reported for the testing sets (one-fold). To study impact
of data augmentation, model training was done on training
data without and with data augmentation and performance was
assessed only on original testing dataset (one assigned fold for
testing without any data augmentation).

III. RESULT

A. Participants

As discussed in Section II, eighty-eight participants were
recruited, among whom, 27 were non-frail and 61 were pre-
frail/frail (age= 80.63±8.07). Twelve pre-frail/frail participants
out of 61 and six non-frail out of 27 participants were used for
each fold. One fold was used as testing and the rest of data
were used as training. Training sets were balanced using the data
augmentation process. Of note, the data augmented were only
used in the training sets (four folds in cross-validation approach).
Because the number of training pre-frail/frail data was almost
twice as training non-frail data (49 frail/pre-frail data compared
to 21 non-frail data), for each pre-frail/frail data five new HR
data and for each non-frail data 10 new HR data were produced
to balance the data (total of 210 non-frail vs 245 frail/pre-frail
training dataset for each fold). Using this approach, the number
of training data was increased by a factor of 7.5, which was
required for providing reliable training sample for the LSTM
approach [37].

B. Frailty Assessment Using Machine Leaning

Result of logistic regression models based on multiple set-
tings with different regularization methods and solver options
are presented in Table II. The comparison between different
settings showed that saga as a solver without any regularization
method for regularization provided the best result (accuracy and
F1-score of 70.0% and 79.0%, Table II). Based on the precision
values (between 29.0% to 48.0%), the results were biased toward
pre-frailty/frailty class.
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TABLE II
AVERAGE OF PERFORMANCE METRICS OF LOGISTIC REGRESSION WITH DIFFERENT SOLVER AND REGULARIZATION METHODS

Highest performance metric in each column is highlighted in bold.

TABLE III
AVERAGE OF PERFORMANCE METRICS OF MLP WITH DIFFERENT OPTIMIZER, ACTIVATION FUNCTION, AND THE NUMBER IF HIDDEN LAYERS

AND THEIR HIDDEN UNITS

Highest performance metric in each column is highlighted in bold.

TABLE IV
AVERAGE OF PERFORMANCE METRICS OF XGBOOST WITH DIFFERENT MAX NUMBER OF DEPTH, NUMBER OF ESTIMATORS, AND DIFFERENT BOOSTERS

Highest performance metric in each column is highlighted in bold.

For MLP, maximum iteration was set on 500 and regulariza-
tion was set on 0.001 as optimum values for the model. Using
these settings and applying MLP, an accuracy of 73.0% and
F-score of 82.0% were achieved (Table III). The best result was
achieved using SGD as an optimizer, ReLU as an activation
function, with three hidden layers of (20,15, 10) units (Table III).

Finally, for XGBoost multiple settings have been applied
based on different maximum depth, number of estimators, and
booster (gbtree, gblinear, and dart) (Table IV). The best result
was obtained from maximum depth = 4, number of estimator =

200, gbtree as the booster, and L2 regularization, providing an
accuracy of 72.0% and F-score of 82.0%.

C. Frailty Assessment Using LSTM

LSTM model, with evenly sampled HR time series (7 Hz) and
data augmentation steps, showed classification results of 87.0%,
82.0%, and 0.87, respectively, for F1-score, accuracy, and AUC
in detecting pre-frailty/frailty within the testing dataset; sensi-
tivity, specificity, and precision were 83.0%, 80.0%, and 91.0%,
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TABLE V
AVERAGE OF PERFORMANCE METRICS IN 5-FOLD CROSS VALIDATION USING LSTM WITH UNEVENLY SAMPLED DATA AND EVENLY SAMPLED DATA WITH

LINEAR INTERPOLATION AND RESAMPLING FREQUENCIES OF 3, 5, 7 AS AN INPUT

Highest performance metric in each column is highlighted in bold.

respectively for predicting frail/pre-frail as the positive condi-
tion. Based on the current results, the best setting (maximum
F1-score) was achieved using evenly sampled HR data (7 Hz),
along with an architecture with five LSTM layers and two dense
layers. The number of units for this architecture were 55, 50, 40,
30, and 20 for five LSTM layers and 10 and 5 for dense layers,
respectively (see Table V for details).

Further, interpolation and resampling approach enhanced the
performance by 4.4% for F1-score, 3.2% for accuracy, and 4%
for AUC compared to using unevenly sampled HR data as input
to the LSTM model. The data augmentation approach affected
the performance of the model by improving the F1-score by
3.4%, accuracy by 3.2%, and AUC by 2.4%.

IV. DISCUSSION

A. Frailty and HR Dynamics

As hypothesized, we observed that solely based on char-
acteristics of HR response and recovery to walking we were
able to predict pre-frailty/frailty with an accuracy of 82.0% and
F1-score of 87.0%. The observed strong association between HR
behavior and frailty suggests that HR monitoring during physical
activity, may be considered as a robust measure of frailty, and an
additional measure of physiological reserve to, in combination
with motor function assessment, improve frailty prediction. One
cause of frailty is the homeostenosis phenomenon, which is the
reduced ability to maintain homeostasis or physiological balance
under stress [6] and ANS helps in maintaining homeostasis by
regulating physical activities [10], [11], [12]. An impaired ANS
would be incapable of maintaining hemodynamic homeostasis
under stress from the physical activity of walking [13], [14]
and HR dynamics can be used for assessment of sympathetic
and parasympathetic abnormalities during this physical activity
[38]; here, the sympathetic (HR increase during activity) and
parasympathetic (HR decline in the recovery phase) activities
were directly included in HR dynamics measures used for LSTM
modeling. In confirmation to this hypothesis, our previous find-
ings showed significant associations between HRV baseline
measures during resting and HR dynamic parameters [22].

B. HR Data Classification Using LSTM Model

In confirmation of our secondary hypothesis, our results sug-
gest that the implemented deep learning approach can outper-
form shallow learning models for frailty identification. Machine

learning results shows that the best performance was achieved
using MLP with SGD as a solver, ReLU as an activation function
and with 3 hidden layers with 20, 15, and 10 hidden units in each
layer respectively. By comparing the result of MLP with the
best result of LSTM with 5 LSTM layer with 55,50,40,30, and
20 hidden units and 2 Dense layers with 10 and 5 hidden units
we can see the F1-score improved 5%, the accuracy improved
10%, precision improved 16%, and surprisingly, the specificity
improved from 32% to 80%. The observed improvement in
the model prediction here may be due to the fact that shal-
low learning approaches are useful for simple and more linear
classification rather than complex nonlinear ones [39]. LSTM
model, on the other hand, can learn more complex and nonlinear
functions, and also provides a memory cell that is capable of
storing and learning long range dependencies, which may be
the case for HR response to physical activities [40].

Within the current sample, data augmentation improved the
validation accuracy and F1-score in predicting frailty by 3.2%
and 3.4%, respectively. This is because the performance of
LSTM approach relies heavily on the training data sample size
[37]; synthetic training data used for increasing sample size and
balancing frailty groups in the training dataset here eliminated
the bias in the trained model due to unbalanced number of
two frailty groups in the original training data. Further, data
augmentation technique improved the frailty prediction here by
reducing the under-fitting problem [41], [14].

We also observed that in the LSTM model, increasing the
number of hidden layers from three to seven layers enhanced
the performance of the model. But increasing the number to
more than seven resulted in a reduced prediction accuracy, which
may happen because of overfitting [42]. This finding was also
corroborated with Ye et al. [43] results, which found that as
the LSTM model get deeper (increasing the number of hidden
layers), the chance of overfitting in the model increases.

C. Limitation and Future Direction

In this study, 88 participants were included, among which
less than one third were non-frail older adults. Although the
small number of participants and unbalanced frailty group were,
to some extent, remedied with augmentation, the sample size
limitation still exists. Therefore, current findings need to be
confirmed in future research and we expect a better performance
of LSTM model in a larger sample of participants. Similar to Park
et al. and Arshad et al. [44], [18], we merged pre-frail and frail
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groups into one single group due to the limited number of frail
participants within our cohort. This is an additional limitation of
the current study as the trajectory of frailty progression was not
investigated here. Specially, identifying frailty in early stages
(i.e., pre-frailty) can enhance the rehabilitation planning, as
frailty become less reversible in later stages.

The second limitation of the current study was related to un-
equal length of HR time series data. Within the current protocol
we asked participants to walk for a certain distance, instead of
a specific period. Since LSTM requires data of the same length
for input, we used padding techniques to provide equal data
sample for the analysis. Nevertheless, padding technique may
affect the LSTM networks function, and subsequently impact
the performance and accuracy of the model [45]. Therefore, it
would be interesting to explore the accuracy of the proposed
approach in future studies by collecting HR data for equal dura-
tion of walking. We used preprocessing technique (interpolation
and resampling) to convert non-uniformly sampled HR data to
uniformly sampled HR. Utilizing enhanced LSTM architecture
[46] and the associated pros/cons needs to be explored in future
studies. LSTM model with HR time series as input led to
promising performance without any feature engineering that is
required in traditional feature-based machine learning methods.
However, identifying characteristic in HR time series that was
important to differentiate between frailty groups was not possi-
ble within the LSTM approach. Also, deploying the proposed
algorithm in future on bigger datasets and other experimental
settings (different datasets) will help in external validation of our
approach, especially in comparison to other competing methods.

V. CONCLUSION

In this study, a deep learning model with HR time series as
input was used for frailty identification. Using the LSTM model,
participants were classified into their associated groups with
a F1-score of 87.0% and an accuracy of 82.0%. Our results
also demonstrated that data augmentation enhanced the model
accuracy and F1-score by 3.2% and 3.4%, respectively. Further,
current results showed the importance of converting unevenly
sampled HR to evenly sampled data to improve model predic-
tion (F1-score and accuracy by 4.4% and 4.0%, respectively).
Comparing the LSTM with other machine learning approaches
(i.e., logistic regression, MLP, and XGBoost) showed that LSTM
outperformed other approaches by improving the F1-score and
accuracy 5.0% and 9.0% on average.
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