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Background: Difficulties in orchestrating simultaneous tasks (i.e., dual-tasking) have
been associated with cognitive impairments in older adults. Gait tests have been
commonly used as the motor task component for dual-task assessments; however,
many older adults have mobility impairments or there is a lack of space in busy clinical
settings. We assessed an upper-extremity function (UEF) test as an alternative motor
task to study the dual-task motor performance in older adults.

Methods: Older adults (≥65 years) were recruited, and cognitive ability was measured
using the Montreal cognitive assessment (MoCA). Participants performed repetitive
elbow flexion with their maximum pace, once single-task, and once while counting
backward by one (dual-task). Single- and dual-task gait tests were also performed with
normal speed. Three-dimensional kinematics was measured both from upper-extremity
and lower-extremity using wearable sensors to determine UEF and gait parameters.
Parameters were compared between the cognitively impaired and healthy groups using
analysis of variance tests, while controlling for age, gender, and body mass index (BMI).
Correlations between UEF and gait parameters for dual-task and dual-task cost were
assessed using linear regression models.

Results: Sixty-seven older adults were recruited (age = 83 ± 10 years). Based
on MoCA, 10 (15%) were cognitively impaired. While no significant differences were
observed in the single-task condition, within the dual-task condition, the cognitively
impaired group showed significantly less arm flexion speed (62%, d = 1.51, p = 0.02)
and range of motion (27%, d = 0.93, p = 0.04), and higher speed variability (88%,
d = 1.82, p < 0.0001) compared to the cognitively intact group, when adjusted with
age, gender, and BMI. Significant correlations were observed between UEF speed
parameters and gait stride velocity for dual-task condition (r = 0.55, p < 0.0001) and
dual-task cost (r = 0.28, p = 0.03).

Abbreviations: ANOVA, analysis of variance; AUC, area under curve; BMI, body mass index; CES-D, center for
epidemiologic studies depression; CI, confidence interval; CoV, coefficient of variation; MMSE, mini–mental state
examination; MoCA, Montreal cognitive assessment; ROC, receiver operating characteristic; SD, standard deviation; SE,
standard error; UEF, upper-extremity function.

Frontiers in Aging Neuroscience | www.frontiersin.org 1 July 2016 | Volume 8 | Article 167

http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnagi.2016.00167
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fnagi.2016.00167
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2016.00167&domain=pdf&date_stamp=2016-07-07
http://journal.frontiersin.org/article/10.3389/fnagi.2016.00167/abstract
http://loop.frontiersin.org/people/293132/overview
http://loop.frontiersin.org/people/357224/overview
http://loop.frontiersin.org/people/308301/overview
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


fnagi-08-00167 July 5, 2016 Time: 15:11 # 2

Toosizadeh et al. Upper-Extremity Dual-Task Test

Conclusion: We introduced a novel test for assessing dual-task performance in older
adults that lasts 20 s and is based on upper-extremity function. Our results confirm
significant associations between upper-extremity speed, range of motion, and speed
variability with both the MoCA score and the gait performance within the dual-task
condition.

Keywords: dual-task cost, mild cognitive impairment, Alzheimer’s disease, upper-limb movements, cognition

INTRODUCTION

Difficulties in orchestrating simultaneous tasks have been
associated with cognitive impairments in older adults
(Persad et al., 2008; Montero-Odasso et al., 2012). Specifically,
during dual-task conditions impairments in gait and balance
performance have been reported, which have been associated
to deficits in attentional resources (Hauer et al., 2003; Beauchet
et al., 2005; Montero-Odasso et al., 2012; Kearney et al., 2013;
Schoene et al., 2014). In older adults, specially, deficits in dual-
tasking are more pronounced; compared to younger individuals,
older adults show higher reductions in both motor and cognitive
task performances, with a higher tendency to protect the
motor task in the expense of the cognitive task (Schaefer and
Schumacher, 2010). Furthermore, previous studies demonstrated
association between gait dual-task performance and cognitive
tests (the MoCA and the MMSE; Montero-Odasso et al., 2012;
Ansai et al., 2016). Poor dual-task gait performance has also
been significantly associated with pathologically decreased
executive and neuropsychological function, and demonstrated
to be predictive of Alzheimer’s disease or even mild cognitive
impairment (Camicioli et al., 1997; Sheridan et al., 2003;
Montero-Odasso et al., 2012). Previous work have suggested
different theoretical models to explain the nature of dual-tasking
based on psychological evidence including capacity sharing (i.e.,
shared processing capacity or mental resources among tasks),
bottlenecks (i.e., dual tasks need the same mechanism/resources
at the same time), and cross-talk (i.e., interference in dual-tasking
due to similarities in the content of information being processed)
(Pashler, 1994).

Assessing dual-task performance is also clinically important
because it represents the real life condition for performing daily
activities, and may better describe the potential for adverse events
such as falling (Hausdorff et al., 2005; Montero-Odasso et al.,
2012; Kearney et al., 2013). Gait tests have been commonly used
as the motor task component for dual-task assessments; however,
many older adults have mobility impairments and high risk of
falling during testing, or there is a lack of time and space in busy
clinical settings, which can influence the execution of the gait test.
Additionally, pencil and paper screening for cognition, is stressful
and challenging for patients, and may be difficult to perform in
a noisy clinical setting. Accordingly, more than half of patients
with dementia never receive an evaluation of diagnosis, and a
quick and objective sensitive and specific measure of cognition
would be useful in clinical research settings, reducing observer
bias, and decreasing subject stress. An alternative motor task
assessment for dual-tasking may be beneficial from both clinical

and research viewpoints for assessing cognitive impairments in
older adults.

We have previously developed and validated an UEF test
to assess slowness, weakness, exhaustion, and flexibility within
an upper-extremity motion (Toosizadeh et al., 2015b, 2016).
The UEF test integrates low-cost sensors and data acquisition
system (as low as $200), the physical assessment (including
preparation/calibration) is easily performed in less than 1 min,
and the post-processing is performed in less than 2 min.
This test was specifically validated based on the Fried index
(Fried et al., 2001) to identify frailty level (non-frail, pre-frail,
and frail categories) among community dwelling older adults.
Additionally, in previous work we determined strong correlations
between upper-extremity motion and gait speed (Toosizadeh
et al., 2015b; Gary et al., 2016) and 6-min walk distance
(unpublished data).

The purpose of the current study was, therefore, to assess
the UEF as an alternative motor task instead of walking (gait
assessment), to assess dual-task motor performance in older
adults. We, specifically, examined: (1) associations between the
UEF dual-task performance and validated dementia rating scales,
including MoCA and MMSE; and (2) associations between
UEF and gait dual-task performances. Based on our previous
observations of strong associations between UEF and gait
performances within single-task conditions (Toosizadeh et al.,
2015b; Gary et al., 2016), we hypothesized that, similar to gait
dual-task, UEF dual-task performance would decrease with the
cognitive level as measured by MoCA (or MMSE), and significant
correlations would exist between dual-task and dual-task cost
measures within the UEF and gait tests.

MATERIALS AND METHODS

Participants
Older adult (≥65 years) were recruited from Banner Sun Health
Research Institute’s, Longevity Cohort from June 2015 to August
2015. Participants were excluded if they had known disorders
associated with severe gait deficits (including stroke, diagnosed
Parkinson’s disease, recent surgery, major foot deformity such
as Charcot neuroarthropathy, or foot amputation). Furthermore,
participants with major mobility disorders (e.g., who were
unable to walk a distance of 20 m without walking assistance),
and upper-extremity disorders (including severe shoulder or
elbow osteoarthritis) were also excluded. Assistive devices, used
routinely by participants in their daily activities, including canes
and walkers, but excluding wheelchairs, were allowed. The study
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was approved by the University of Arizona’s and Banner Sun
Health Research Institute’s Institutional Review Boards. Written
informed consent according to the principles expressed in the
Declaration of Helsinki (World Medical Association, 2013) was
obtained from all subjects (or an authorized person in case of
lack of clinically assessed capacity for informed consent) before
participation.

Clinical Measurements
Clinical measurements included MoCA (Nasreddine et al., 2005),
MMSE (Folstein et al., 1975), the CES-D scale (Orme et al.,
1986), and the Fried frailty index (Fried et al., 2001). Both
MoCA and MMSE were used, separately, as standard methods for
assessing cognitive impairments. Participants with MMSE score
less than 24 were identified as those with moderate to severe
cognitive impairments (Tombaugh and McIntyre, 1992). MoCA
was used as a more sensitive test for identifying participants with
mild cognitive impairment; a cutoff of 20 ≥ 30 was used for
MoCA to indicate cognitively intact status as has been recently
suggested to provide better accuracy (compared to original cutoff
of 26≥ 30) in those with unselected cognitive disorders (Hancock
and Larner, 2011; Larner, 2012). Both MMSE and MoCA scores
were adjusted with normative age and education level based on
previous work (Measso et al., 1993; Malek-Ahmadi et al., 2015).
The CES-D short version scale was used to measure self-reported
depression symptoms. Fried index [unintentional weight loss,
self-reported exhaustion, weakness (grip strength), slow gait
speed (15 feet gait test), and self-reported low physical activity]
was used to assess frailty (Fried et al., 2001). Individuals with one
or two positive Fried criteria were considered pre-frail and those
with three or more, frail, and those with none, non-frail.

UEF Measurements
Each participant performed a 20-s trial of elbow flexion, within
which they repetitively flexed and extended their dominant
elbow to full flexion and extension as quickly as possible in
seated position, while wearing the UEF system. Before the
actual test, participants performed a short practice trial on their
non-dominant arm to become familiar with the protocol. The
protocol was explained to participants and they were encouraged
only once, before the elbow flexion, to do the test as fast as
possible (participants were not further encouraged during the
test). A tri-axial wearable gyroscope and accelerometer sensor
(sample frequency= 100Hz, BioSensics LLC, Boston, MA, USA),
was attached to the upper-arm near the biceps and one to the
wrist, both on the dominant arm, using a band attached with
Velcro, to estimate three-dimensional angular velocity of the
upper-arm and forearm segments, and ultimately elbow flexion
(Figure 1).

Several outcome measures representing kinematics and
kinetics of the elbow flexion were derived using angular velocity
and anthropometric data (i.e., participants’ gender, stature, and
body mass). UEF outcome measures included: (1) speed; (2)
flexibility; (3) power; (4) rise time; (5) moment; (6) speed
reduction; (7) speed variability; and (8) flexion number (see
Table 1 for definitions). Speed, rise time, and flexion number
were used to assess slowness of movement, power and moment

were used to assess acceleration and weakness, and exhaustion
was estimated using speed reduction data within 20 s of elbow
flexion. Furthermore, speed variability was measured here as the
speed coefficient of variation (CoV = SD of speed divided by
mean speed) within 20 s of elbow flexion. Speed variability was
measured here to represent motor performance variability that
can potentially be influenced by performing a dual-task, because
previous studies demonstrated a larger effect of dual-task on
gait variability (gait speed CoV) compared to gait speed itself
(Beauchet et al., 2005; Montero-Odasso et al., 2012) (Readers are
referred to (Toosizadeh et al., 2015b) for more details regarding
validation of UEF using a reference motion capture system, and
detailed description of parameter calculations.)

Gait Measurements
Gait was objectively assessed using validated wearable
technology. Three-dimensional acceleration and angular
velocity of shins were measured using two wearable sensors
(the same sensors used in UEF measurements), each of which
included a tri-axial gyroscope, and a tri-axial accelerometer
(sample frequency = 100 Hz, BioSensics, Boston, MA, USA),
to derive gait outcome measures using established methods
previously reported (Aminian et al., 2002; Najafi et al., 2009,
2010). Sensors were attached to the shins above the ankle. Gait
was assessed within a minimum of 25 steps at a normal desired
pace that participants perform everyday activities. Gait outcome
measures included: (1) stride velocity; (2) stride time; (3) stride
length; (4) double support; and (5) gait variability (see Table 1 for
definitions). All parameters were measured during steady state
of walking, by removing gait initiation and termination using
an algorithm described in our previous work (Lindemann et al.,
2008; Toosizadeh et al., 2015a).

Dual-Task Protocol and Dual-Task Cost
Measurements
Both UEF and gait tests were followed immediately by a dual-
task condition test, within which participants were asked to
maintain their usual speed for the test (i.e., as fast as possible
for UEF and normal desired speed for gait), while counting
numbers backward by one at their self-selected rhythm. Counting
numbers was selected here as the dual-task because it involves
working memory (Lee and Kang, 2002), and, therefore, is more
directly related to executive functions, compared to other tasks
such as naming objects/animals (Smith et al., 2001; Beauchet
et al., 2005; Montero-Odasso et al., 2012). Also, counting is a
rhythmic task and may highly interfere with another rhythmic
task that has a different frequency such as walking or repetitive
elbow flexion (Taga et al., 1991; Beauchet et al., 2005). The
dual-task of counting backward by “one” was chosen here, since
it has been proven to be simpler and more appropriate for
older adults (Beauchet et al., 2003). To better represent the
natural environment in performing daily activities, there was no
instruction to prioritize either the physical task or the counting
task (Hittmair-Delazer et al., 1994; Weiss et al., 2003; Montero-
Odasso et al., 2012).
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FIGURE 1 | UEF experimental setup and sensor output (i.e., elbow angular velocity).

TABLE 1 | UEF and gait parameter definitions.

Definition Reference

UEF Parameters

Speed Mean value of elbow angular velocity range (maximum minus minimum speed) Toosizadeh et al., 2015b

Flexibility Mean value of elbow flexion range Toosizadeh et al., 2015b

Power Mean value of product of the angular acceleration range and the range of angular velocity Toosizadeh et al., 2015b

Rise time Mean value of the required time to reach the maximum angular velocity Toosizadeh et al., 2015b

Moment Mean value of maximum moments on elbow within each flexion/extension estimated from moment of inertia
of forearm and hand, and elbow motion

Toosizadeh et al., 2015b

Speed reduction Difference in angular velocity range between the last and the first 5 s of elbow flexion as a percentage of the
initial angular velocity range

Toosizadeh et al., 2015b

Speed variability CoV of the angular velocity range during 20 s Toosizadeh et al., 2015b

Flexion number Number of flexion/extensions during 20 s Toosizadeh et al., 2015b

Gait Parameters

Stride velocity Average of gait speed (horizontal distance traveled divided by duration of walking) among strides Aminian et al., 2002

Stride time Time interval starts when one foot makes contact with the ground and ends when that same foot contacts
the ground again

Aminian et al., 2002

Stride length Distance traveled by the same limb between two successive heel contacts Aminian et al., 2002

Double support Duration of the initial and terminal double support when both feet are in contact with the ground as a
percentage of the stride time

Aminian et al., 2002

Gait variability CoV of gait speed among strides Aminian et al., 2002

A reference for calculation procedure is presented for each parameter. CoV, coefficient of variation (standard deviation divided by the mean).

Each of the above UEF and gait parameters were measured
within both single-task (no counting), and dual-task (counting)
conditions. To assess changes in individual’s performance from
a single to a dual-task, dual-task “cost” was measured for each
parameter as percentage of change within two conditions:

Parameterdual−task cost

=
Parameterdual−task − Parametersingle−task

Parametersingle−task
(1)

Of note, to assure that a higher positive percentage value of
dual-task cost represents deteriorated motor performance for
all parameters, the dual-task cost values were multiplied by
−1 for rise-time, speed reduction, and speed variability UEF
parameters, and stride time, double support, and gait variability
gait parameters.

To assess the secondary task performance (i.e., counting
numbers), the number of correctly counted numbers within the
20-s arm test was considered as an outcome. For this purpose,
the number of mistakes was subtracted from the total counted
numbers to determine the correctly counted numbers. This
parameter represents the speed and accuracy of the secondary
task within the dual-task condition (Hauer et al., 2003).

Statistical Analysis
UEF parameters (single-task, dual-task, and dual-task cost)
were compared between two groups of cognitively intact
and cognitively impaired participants (defined by MoCA)
using separate analyses of variance (ANOVAs); age, gender,
and BMI were considered as covariates and Cohen’s effect
size (d) was estimated. Correlations between UEF parameters
and the MoCA score (and MoCA sub-categories including
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visuospatial/executive, naming, attention, language, abstraction,
delayed recall, and orientation) were assessed using linear
multiple regression-ANOVA models with each UEF parameter,
age, gender, and BMI as independent variables and the MoCA
score (or the MoCA subcategory score) as the dependent
variable. Further, a multiple logistic regression model was used
to determine the association between UEF parameters combined
and cognition status. In this model, UEF parameters and
demographic parameters with significant ANOVA between group
differences (p < 0.01) among cognition groups were considered
as independent variables, and two groups of cognitively intact and
cognitively impaired (defined by MoCA) was considered as the
dependent variable; sensitivity, specificity, and area under curve
(AUC) were estimated using receiver operating characteristic
(ROC) curves for identifying cognitively impaired participants.
Furthermore, to compare UEF and gait within the dual-task
condition, correlations between UEF and gait dual-task and
dual-task cost parameters were assessed using linear simple
regression-ANOVA models. For all correlations linear Pearson
values (r) were reported. ANOVA or χ2 tests (as relevant)
were performed to evaluate the differences in demographic
and clinical parameters between two groups of cognitively
intact and cognitively impaired participants (defined by MoCA).
A summary of results is presented as mean (SD). All analyses
were done using JMP (Version 11, SAS Institute Inc., Cary,
NC, USA), and statistical significance was concluded when
p < 0.05.

RESULTS

Participants
Seventy three older adults were screened for the study, among
which 67 (92%) were able to complete all physical tests. Six
individuals (8%) were not eligible for the study due to an inability
to perform either the UEF or the gait test. Among participants,

20 (30%) were male, with a mean (SD) age and BMI of 82
(11) years and 25.66 (4.09) kg/m2, respectively; corresponding
values were 83 (10) years and 25.69 (4.52) kg/m2 for females.
Respectively, 10 (15%) and 3(4%) of participants were diagnosed
with cognitive impairment using MoCA and MMSE tests. As
expected, cognitively impaired participants (defined by MoCA)
were significantly older than cognitively intact individuals
(p < 0.001). The percentage of pre-frail/frail individuals was
also higher among the cognitively impaired group; however,
the difference was not significant (p = 0.07). Depression score
was not significantly different between two groups of cognitively
intact and cognitively impaired participants (p = 0.58). Further,
none of participants had problem understanding questions and
counting numbers in English as all of them were English speakers.
All socio-demographic data and clinical information are reported
in Table 2.

Association between UEF Dual-Task
Performance with MoCA and MMSE
Results from ANOVA demonstrated that UEF performance was,
in general, worse in cognitively impaired participants (defined
by MoCA) in both single- and dual-task conditions. However,
when adjusting for age, gender, and BMI, only UEF parameters
within the dual-task condition showed significantly worse
performance in cognitively impaired participants. Specifically,
speed, flexibility, and speed variability were significantly different
between cognitively intact and cognitively impaired participants
(Table 3; Figure 2); the largest effect size of between-group
differences was observed in speed variability within the dual-task
condition (d = 1.82, p < 0.0001). In contrary to the dual-
task condition, none of the UEF parameters were significantly
different between two groups when comparing under the single
task condition (d < 0.76, p > 0.16). Results from dual-
task cost showed that among UEF parameters, speed, power,
flexibility, and speed variability were significantly larger (more
than five times larger) in cognitively impaired compared to

TABLE 2 | Sociodemographic and clinical measures.

Variable Male Female Total Cognitively intact
(MoCA ≥ 20)

Cognitively impaired
(MoCA < 20)

p-value†

Number (% of the group) 20 (30%) 47 (70%) 67 57 (85%) 10 (15%) –

Age, year (SD) 82 (11) 83 (10) 83 (10) 81 (10) 93 (5) <0.001∗

Stature, cm (SD) 173.93 (8.10) 160.22 (6.59) 164.31 (9.44) 164.26 (9.49) 164.70 (9.65) 0.90

Body mass, kg (SD) 77.74 (14.17) 66.21 (12.93) 69.65 (14.23) 70.56 (14.71) 62.95 (7.60) 0.16

BMI, kg/m2 (SD) 25.66 (4.09) 25.69 (4.52) 25.68 (4.38) 26.02 (4.51) 23.19 (1.78) 0.07

Education level

Primary, n (% of the group) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) –

Secondary, n (% of the group) 1 (5%) 7 (15%) 8 (12%) 9 (16%) 1 (10%) 0.91

High school, n (% of the group) 19 (95%) 40 (85%) 59 (88%) 48 (84%) 9 (90%) 0.91

MoCA score, 0–30 (SD) 24.45 (3.19) 24.13 (4.41) 24.23 (4.05) 25.23 (2.94) 16.50 (2.98) –

MMSE score, 0–30 (SD) 26.53 (1.90) 27.16 (2.07) 26.97 (2.02) 27.45 (1.39) 23.14 (2.27) <0.0001∗

CES-D score, 0–30 (SD) 3.05 (3.63) 3.98 (4.56) 3.69 (4.29) 3.98 (4.44) 3.00 (3.51) 0.58

Pre-frail/frail, n (% of the group) 10 (50%) 30 (64%) 40 (60%) 31 (54%) 9 (90%) 0.07

The asterisk symbol represents a significant difference. †p-value for comparison of variables among cognition groups. MoCA, Montreal cognitive assessment; BMI, body
mass index; MMSE, mini–mental state examination; CES-D, center for epidemiologic studies depression. For each gender and cognition groups the mean and standard
deviation (SD) values are presented.
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TABLE 3 | The association between MoCA and the UEF dual-task performance.

Variable Cognitively intact
(MoCA ≥ 20)

Cognitively impaired
(MoCA < 20)

p-value† F(4,66)‡ 95% CI
(Lower)

95% CI
(Upper)

Effect
size

Correlation with MoCA
(r and p-value)¶

Speed dual-task (deg/s) 864.81 ± 299.91 455.05 ± 237.20 0.02∗ 5.10 −274.82 −25.41 1.51 r = 0.48, p < 0.01∗

Flexibility dual-task (deg) 100.58 ± 29.26 73.60 ± 28.91 0.04∗ 2.71 −25.86 −0.80 0.93 r = 0.37, p < 0.01∗

Power dual-task (deg2/s3 x 100000) 152.36 ± 125.07 36.53 ± 32.79 0.16 2.72 −87.62 14.60 1.27 r = 0.50, p < 0.01∗

Rise time dual-task (s/100) 26.05 ± 7.29 30.19 ± 4.49 0.69 3.21 −2.37 3.55 0.68 r = −0.22, p = 0.45

Moment dual-task (Nm) 1.08 ± 0.72 0.51 ± 0.38 0.37 1.35 −0.34 0.13 0.99 r = 0.35, p = 0.23

Speed reduction dual-task (%) 14.04 ± 14.39 16.63 ± 45.39 0.73 0.03 −7.40 10.53 0.08 r = −0.12, p = 0.27

Speed variability dual-task (%) 16.30 ± 8.24 41.75 ± 18.52 < 0.0001∗ 3.29 7.29 20.00 1.82 r = −0.50, p < 0.01∗

Flexion number dual-task 23.95 ± 6.52 17.50 ± 3.16 0.32 9.31 −3.47 1.17 1.26 r = 0.37, p = 0.58

Speed dual-task cost (%) 2.77 ± 57.64 29.68 ± 32.02 0.01∗ 2.37 −8.99 39.75 0.58 r = −0.21, p = 0.05

Flexibility dual-task cost (%) 0.73 ± 22.43 12.92 ± 16.91 < 0.01∗ 2.41 −0.80 18.97 0.61 r = −0.22, p = 0.04∗

Power dual-task cost (%) 9.25 ± 52.83 46.36 ± 29.87 0.01∗ 2.13 2.40 46.70 0.86 r = −0.31, p < 0.01∗

Rise time dual-task cost (%) 13.15 ± 27.37 11.69 ± 35.62 0.13 0.76 −13.37 13.58 0.05 r = −0.16, p = 0.19

Moment dual-task cost (%) 12.10 ± 21.16 19.07 ± 20.29 0.36 0.94 −4.91 13.39 0.34 r = −0.09, p = 0.37

Speed reduction dual-task cost (%) 0.20 ± 5.31 2.33 ± 3.97 0.31 0.42 −3.53 1.13 0.48 r = −0.10, p = 0.60

Speed variability dual-task cost (%) 25.95 ± 59.80 146.14 ± 64.94 0.03∗ 2.76 3.84 103.62 1.93 r = −0.25, p = 0.08

Flexion number dual-task cost (%) 8.92 ± 14.60 20.17 ± 22.66 0.22 1.78 −3.19 13.62 0.62 r = −0.29, p = 0.05

Correctly counted numbers 24.34 ± 7.39 15.63 ± 16.75 < 0.01∗ 3.08 −9.73 −2.09 0.67 r = 0.27, p = 0.18

For each group of cognitively intact and cognitively impaired participants, mean and standard deviation (SD) values of UEF parameters are presented. Correlations
between UEF parameters and MoCA scores are presented as linear Pearson (r) values. Results are presented only for the dual-task condition and dual-task cost, since no
significant association between cognitive impairment and UEF parameters was determined within the single-task condition. The asterisk symbol represents a significant
association. †ANOVA p-value for UEF parameter differences between cognition groups, adjusted with age, gender, and body mass index (BMI). ‡F-values for each
UEF parameter as the dependent variable and cognition groups, age, gender, and BMI as independent variables. Numerator degrees of freedom for the F ratio = 4;
denominator degrees of freedom for the F ratio = 66. ¶For r values Pearson correlations between each UEF parameter and the MoCA score are reported using simple
regression unadjusted with age, gender, and BMI. For p-values Pearson correlations between each UEF parameter and the MoCA score are reported using multiple
regressions adjusted with age, gender, and BMI.
MoCA, Montreal cognitive assessment; CI, confidence interval.

cognitively intact participants (d = 0.58–1.93, p < 0.03, Table 3).
Results from the logistic regression model (using UEF and
demographic parameters) showed that, cognitive impairment
(defined by MoCA) was identified with sensitivity and specificity
of 100 and 87% (AUC = 0.94, Table 4). Using age as the
only predictor variable of cognition groups, sensitivity and
specificity of 100 and 71% (AUC = 0.84) were achieved.
According to these results adding three UEF parameters of
dual-task speed variability, flexibility dual-task cost, as well
as correctly counted number (secondary task performance)
can improve specificity of cognitive impairment prediction
by 23%.

Several UEF parameters were correlated with the MoCA
score within both single- and dual-task conditions; however,
when age, gender, and BMI were included in the regression
model, only speed, flexibility, power, and speed variability
parameters within the dual-task condition and dual-task cost
for flexibility and power were significantly (and independent of
demographic data) correlated with the MoCA score (Table 3;
Figure 2). Speed variability within the dual-task condition
demonstrated the largest Pearson correlation with the MoCA
score (r = 0.50); the lower the MoCA score, the higher
UEF speed variability while counting numbers. Of note, a
significant negative Pearson correlation was also observed
between age and the MoCA score (r = −0.54, p < 0.001).
When dual-task speed variability and age considered as
independent variables together, and the MoCA score as

the dependent variable, the regression Pearson correlation
improved to r = 0.64. Furthermore, comparing separate
associations of age and MoCA with UEF dual-task speed
variability, showed a better correlation between MoCA and
UEF performance (r = −0.50, p < 0.01) compared to age
and UEF performance (r = 0.24, p = 0.03). Also, in a
regression model with UEF dual-task speed variability as the
dependent variable, and both the MoCA score and age as
independent variables, only the MoCA score showed significant
independent association with the UEF performance (p < 0.01)
but not age (p = 0.41). None of the UEF parameters were
significantly associated with MoCA score within the single-task
condition when adjusted with age, gender, and BMI (r < 0.24,
p > 0.10).

The secondary task measure, correctly counted numbers,
was significantly larger among cognitively intact participants
by 56% (d = 0.67, p < 0.01, Table 3). Furthermore,
although the correctly counted numbers was positively correlated
with the MoCA score, the association was not significant
(Table 3).

Further, among UEF parameters, significant positive
correlations were observed between dual-task speed with
visuospatial/executive, attention, delayed recall, and orientation
MoCA subcategories (r = 0.29–0.33, p < 0.05). The secondary
task of correctly counted numbers was also demonstrated
significant positive correlations with the language MoCA
subcategory (r = 0.41, p < 0.001).
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FIGURE 2 | Association between UEF speed and speed variability with MoCA. Mean and standard error (SE) values of UEF parameters are presented, and
the asterisk symbol represents a significant association. r values were not adjusted with age, gender, and BMI; p-values were adjusted with age, gender, and BMI.

Association between UEF and Gait
Dual-Task Performances
Within the dual-task condition, the strongest correlations were
observed between UEF speed and gait stride velocity (r = 0.55,
p < 0.0001), UEF flexibility and gait stride velocity (r =
0.32, p < 0.01), UEF power and gait stride velocity (r = 0.54,
p < 0.0001), UEF rise time and gait stride velocity (r = 0.
30, p = 0.02), UEF moment and gait stride length (r = 0.59,
p < 0.0001), and UEF flexion number and gait stride length
(r = 0.50, p < 0.0001). No significant correlation was found
between UEF speed reduction and speed variability with
any of the gait parameters within the dual-task condition
(r < 0.28, p > 0.06). Overall, significant correlations, suggest
an association between upper- and lower-extremity motions
within the dual-task condition. Of note, several other associations
exist between UEF and gait parameters; however, only those
with the strongest correlation for each of UEF parameter are
presented.

Comparing the dual-task cost in performing UEF and gait
tests revealed significant correlations only between UEF rise time
and gait stride velocity (r= 0.28, p= 0.03), UEF moment and gait
double support (r= 0.26, p= 0.03), and UEF flexion number and
gait stride length (r = 0.33, p < 0.01).

DISCUSSION

Assessing Cognitive Impairment using
Upper-Extremity Dual-Task Performance
As we hypothesized, older adults with lower cognitive scores
showed worse UEF performance within the dual-task condition.
We also observed a reduction in UEF performance with increase
in MoCA score within the single-task condition, since as people
get older simultaneous declines in motor function and cognitive
function, especially attention and memory, occur, as has been
reported in previous research (Volkow et al., 1998; Verhaeghen
et al., 2003; Blazer et al., 2015). A significant negative correlation
here between the MoCA score and age confirms this fact.
Interestingly, when statistical analyses were adjusted for age
(and gender and BMI), no significant association was observed
between UEF performance and the MoCA score within the
single-task condition. On the other hand, there were significant
associations between UEF dual-task parameters and dual-task
cost with MoCA, even when adjusting for age, suggesting that
performing a dual-task of counting numbers backward could
amplify the cognitive impairment in older adults.

Among UEF parameters only those related to agility, flexi-
bility, and accuracy (variability) of performance were
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TABLE 4 | Results of the multiple logistic regression model.

Independent variables Parameter estimates Standard errors χ2 p-value 95% CI (Lower) 95% CI (Upper)

Intercept 19.58 8.28 5.60 0.02∗ 5.92 40.04

Age (year) −0.04 0.09 0.25 0.62 −0.23 0.13

Speed variability dual-task (%) −5.33 4.22 1.59 0.21 −15.31 2.28

Flexibility dual-task cost (%) −3.86 5.61 0.47 0.49 −17.48 6.01

Correctly counted numbers −0.38 0.25 2.28 0.13 −1.06 −0.04

Dependent variable: cognition groups defined by MoCA; independent variables: UEF parameters and demographic parameters (with significant ANOVA between group
differences (p < 0.01) among cognition groups). The asterisk symbol represents a significant independent association. CI, confidence interval.

different between cognitively intact and cognitively
impaired participants. As reported in Table 3, speed, power
(representing acceleration), and range of elbow flexion
(representing flexibility), as well as speed variability during
elbow flexion were worse in the cognitively impaired
group. While, UEF parameters that are more related to
strength (elbow moment) or exhaustion (speed reduction)
showed no significant difference between two groups.
This is in agreement with previous research based on gait
performance, within which, gait variability and stride velocity
within the dual-task condition have been reported as the
most sensitive parameters for differentiating cognitively
impaired from healthy participants, compared to other
spatial-temporal gait parameters (Beauchet et al., 2005; Al-
Yahya et al., 2011; Montero-Odasso et al., 2012; Muir et al.,
2012).

Within our sample, we observed that visuospatial/executive,
attention, delayed recall, and orientation MoCA subcategories
are better correlated with the UEF dual-task performance.
Previous work has associated the delayed recall and orientation
components of the MoCA test to memory deficits, based
on domain-specific detailed conventional neuropsychological
testing (Lam et al., 2013). Therefore, although associations
are moderate, findings here suggest that UEF dual-task can
better identify working memory and executive functioning
deficits in older adults, compared to impairments in other
cognitive domains. Montero-Odasso et al. (2009) has reported
similar results within dual-task walking performance measures;
they reported that working memory and executive function
performances measured, respectively, with the Letter Number
Sequencing Test (Wechsler et al., 2008) and the Trail Making
Test (Corrigan and Hinkeldey, 1987; Tombaugh, 2004) are
associated with slower walking within dual-task conditions.
Interestingly, a significant association was also observed between
the attention subcategory of MoCA with the UEF dual-task
speed; however, the association was weak. Weaker association
between attention measures and dual-task walking deficits
(compared to executive function and working memory domains)
was also reported previously (Montero-Odasso et al., 2009).
Although, the current findings may confirm previously reported
insights regarding the interactions between cognitive domains
and dual-task performance, future investigations are required
using more domain-specific neuropsychological tests to provide
robust conclusions regarding attention, working memory, and
executive functioning decline and compromised dual-task
performance.

Over the past decade, several researchers have focused on
investigating motor dysfunction due to cognitive impairments,
specifically, studying impairments in brain control of gait within
a dual-task condition. Counting numbers backward, which is
introduced as a mental tracking task, is suggested to share
similar neural network in the brain that are interlinked with
those of gait control, and therefore, can disturb gait performance
(Fuster, 2003; Gazzaley and D’Esposito, 2006; Al-Yahya et al.,
2011). We previously, reported a strong correlation between
rapid upper-extremity motion and gait speed within a single-task
condition (Toosizadeh et al., 2015b), and here, we observed that
correlations exist between upper- and lower-extremity motions
within the dual-task condition. The better people execute
walking, the better they execute the rapid elbow flexion task.
Although rapid elbow flexion seems to be an easy task to perform,
it requires a complex neuromuscular control to accelerate and
decelerate the upper-arm and the forearm movements with an
optimum timing of agonist and antagonist muscle activations,
while maintaining dynamic elbow stability (Raikova and Aladjov,
2003; Raikova et al., 2005; Li and Kuanyi, 2007).

Clinical Implications and Future
Directions
A quick and objective, sensitive and specific screening measure
of cognition would be useful for research and in clinical settings,
reducing observer bias, and decreasing subject stress. The
reported method may serve as a useful future cognition screening
based on dual-task modality, but may lack the precision necessary
as a diagnostic tool or for tracking cognition over time. Although
gait dual-task testing provides high reliability for measuring
cognitive impairment in older adults, performing this test is often
clinically burdensome, and unsuitable for bedbound individuals
and patients with mobility limitations. Results from the current
study, suggest that an alternative motor task performance, such
as a simple rapid elbow flexion while performing a secondary
task, to some extent, may provide valuable information about
cognitive status of older adults. Accordingly, UEF test with
a self-selected speed, as observed in our pilot results, may
not be attention-demanding enough. Therefore, we proposed
the “rapid” UEF test to better highlight speed and accuracy
components of attention based on elbow speed and speed
alterations within the dual-task condition. Furthermore, several
recent studies have demonstrated association between impaired
dual-task gait performance and higher risk of falls in cognitively
impaired older adults (Springer et al., 2006; Toulotte et al.,
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2006). Also, mild cognitive impairment measured using dual-
task gait test has reported as a strong predictor of progression
to more severe cognitive impairments and Alzheimer’s disease
(Verghese et al., 2002; Waite et al., 2005). Since we observed a
strong correlation between upper- and lower-extremity motions
within the dual-task condition, longitudinal research exploring
the association between dual-task UEF performance with fall risk
and cognitive impairment progression may be beneficial.

UEF dual-task performance may also provide implicat-
ions for understanding the recovery of motor performance after
neurological injury, especially for stroke patients who showed
up to 70% progression to dementia (Plummer-D’Amato et al.,
2008; Godefroy et al., 2011). Of note, previous research suggested
higher reliability of upper-extremity testing compared to lower-
extremity for assessing motor performance in rehabilitation
settings in stroke patients (Sanford et al., 1993; Wolf et al.,
2001; Gladstone et al., 2002). Accordingly, the proposed arm
test may provide additional information to study interactions
between cognitive processing and motor behavior, as opposed to
walking or lower-extremity function that are more commonly
performed within daily activities. Our findings here suggest
promise for future investigation exploring upper-extremity dual-
tasking to further improve the clinical impact using other motor
task performances/protocols such as key pressing or finger
movements. Further, within the current approach, assessment
of single-task motor performance can provides baseline data
related to musculoskeletal disorders (such as arthritis) in older
adults. Hence, using dual-task cost outcomes may provide more
meaningful evaluation of neurological diseases by minimizing the
effect of musculoskeletal disorders.

Application of dual-tasking, especially combination of motor
performance and cognitive task, provides the advantage of
assessing human cognition under several difficulty levels. Unlike
subjective questionnaires, a dual-task difficulty can be altered
by changing the cognitive component (e.g., counting backward
by three or seven), or the motor task (e.g., elbow flexion vs.
gait test). Our results here suggest that the motor performance
component of the proposed dual-task is more associated with
working memory and executive functioning, and the cognitive
task performance with language. Increasing the demand for each
component (motor vs. cognitive task) would, therefore, provide
an additional tool for assessing syndromes to help identify type
of dementia. Previous work demonstrated that type 1 dementia
affects cortical part of the brain with symptoms on memory and
language, such as in Alzheimer’s disease and dementia with Lewy
bodies (Royall and Polk, 1998; Román and Royall, 1999; Calderon
et al., 2001). On the other hand, type 2 dementia impacts
frontal-subcortical, frontal, or prefrontal regions of the brain,
which results in more executive dysfunctioning that is common
among patients with vascular dementia or behavioral variant
frontotemporal dementia (Román and Royall, 1999; Gregory
et al., 2002; Hornberger et al., 2008). In future studies we will
address the strength of the UEF tests for detecting syndromes
related to different type of dementia in confirmation with robust
neuropsychological tests.

Lastly, as mentioned above, UEF has been previously validated
as a new method for assessing frailty based on physical function

(Toosizadeh et al., 2015b). Clinical frailty syndrome identifies
homeostenotic older adults with low physiological reserves and
increased vulnerability to stressors (Fried et al., 2001; Rockwood
et al., 2007). Cognitive impairments have been demonstrated to
be a component of frailty, and associated with higher risk of
adverse health outcomes in older adults (Rockwood et al., 2004,
2005). Accordingly, Avila-Funes et al. (2009) showed that adding
a cognitive measure of frailty to physical function measures,
improves the longitudinal prediction of adverse health outcomes.
The current findings, therefore, suggest that adding dual-task
UEF to the original protocol (20-s single-task UEF test) may
enhance frailty assessment by including the cognition component
of frailty. Furthermore, UEF dual-task measurement may prove
sensitive to change over time. These hypotheses should be
confirmed in larger prospective studies.

Limitations
Our sample was selected from older adults living in the home
and community settings, in Sun City, AZ, USA (not including
long term care), who were participants in the Banner Sun Health
Longevity Cohort, thus they may represent a healthier and
highly educated older adult cohort than those living in other
communities, who are of equivalent age.

Based on the implemented cutoff of 20 < 30 for identifying
the cognitively impaired group, only 15% of participants were
assigned to this group. Although the number of participants
in the cognitively impaired group is limited, we still believe
that our conclusions regarding the existing association between
dual-task UEF and MoCA is valid, since significant correlations
were observed between continuous values of dual-task UEF
parameters and MoCA scores. Another limitation was the
absence of clinical diagnosis and neuropsychiatric staging of
cognitive impairment. Further, we acknowledge that although
the effect of age as a potential confound was partly (but not
fully) mitigated by statistical corrections, conclusions should
be interpreted with cautious and further confirmed with more
extensive cognitive tests. Although, strong association between
the MoCA score and UEF performance was observed here, it
should be noted that cognition assessment is a complex and
multidimensional process, and therefore, no direct conclusion
of association between cognitive status and UEF dual-task
performance can be deducted from the current results.

As with measurement limitations in gait-based measures,
upper-extremity disability or injury may limit UEF measure-
ments. Also, the current study lacks intra- and inter-rater
reliability assessments; however, as we previously validated the
UEF test among a larger sample of older adults within a different
experimental settings, we observed significant correlations
between all UEF parameters and gait speed (r = 0.38 – 0.68;
p < 0.001) (Toosizadeh et al., 2015b).

CONCLUSION

In summary, within the current study, we introduced a new
test for assessing dual-task performance in older adults that lasts
20 s and is based on upper-extremity performance. This method
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provides the advantage of precise assessment of several aspects of
motor performance (including flexibility, speed, strength, as well
as exhaustion). Our results confirm strong associations between
upper-extremity speed, range of motion, and speed variability
with both the MoCA score and the gait performance within the
dual-task condition. Current findings, although require further
investigations, introduce a promising method for assessing
cognition status in older adults.
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